معیارهای اطلاعاتی آکائیک و شوارتز

چندین معیار اطلاعاتی به منظور تعیین مرتبه p یک فرایند AR وجود دارد که تمامی آنها مبتنی بر درستنمایی می باشند. به عنوان مثال، معیار اطلاعاتی آکائیک (1973) به صورت زیر می باشد:

دانلود پایان نامه

(2-1)                                              (تعداد پارامترها)  + (درستنمایی ) ln  = AIC

که تابع درستنمایی در آن به تخمین حداکثر درستنمایی ارزیابی می شود و T اندازه نمونه می باشد.

برای یک مدل AR(l) گاوسین، AIC به شکل زیر خواهد بود:

که  تخمین حداکثر درستنمایی واریانس  یعنی  می باشد. اولین جزء در معیار AIC ، میزان تناسب یا برازندگی مدل AR(l) را بر روی داده ها اندازه می گیرد و جزء دوم ، تابع جریمه معیار نامیده می شود. توابع جریمه متفاوت، منجر به نتایج متفاوتی در معیارهای اطلاعاتی می شوند.

معیار متداول دیگر، معیار اطلاعاتی بیزین (شوارتز) می باشد که برای یک مدل AR(l) گاوسین به صورت زیر می باشد:

جریمه هر پارامتر مورد استفاده در معیار AIC برابر با 2 و در معیار BIC برابر با ln(T) می باشد. بنابراین در معیار BIC تمایل به انتخاب یک مدل AR با مرتبه پایین تر برای نمونه های متوسط یا بزرگ می باشد. در عمل به هنگام استفاده از معیار AIC برای انتخاب یک مدل AR ، ابتدا AIC(l) را برای مقادیر l=0,…,p محاسبه می کنیم ( p یک عدد صحیح مثبت از پیش تعیین شده می باشد). سپس مرتبه k را با توجه به کمترین مقدار بدست آمده برای AIC انتخاب می کنیم. ( تی سی، 2005، ص41-42)

 

2-3-5. روش باکس- جینز

به منظور تشخیص این موضوع که یک سری زمانی از کدام یک از فرآیندهای AR ، MA ، ARMA و یا ARIMA برخوردار می باشد و در صورت مشخص بودن نوع فرایند، مقادیر p ,q و یا d مربوطه کدام می باشند از این روش استفاده می شود.

روش باکس-جینز مشتمل بر چهار گام زیر می باشد:

گام اول: تعیین مقادیر مناسب برای p, q و d

گام دوم: تخمین پارامترهای اجزاء MA و AR در مدل.

گام سوم: آزمون مدل برای این منظور که آیا مدل ARIMA انتخابی به طور مناسب بر روی داده ها برازش شده است یا اینکه باید در جستجوی مدل ARIMA مناسب دیگری بود. در صورت مثبت بودن پاسخ، مدل وارد گام چهارم می شود.

گام چهارم: بررسی قابلیت پیش بینی مدل انتخابی. ( گجراتی، 2004، ص840-841)

 

2-3-6. تبدیلات

در برخی موارد نیاز به ایجاد تغییر در داده ها به عنوان مثال، از طریق استفاده از لگاریتم و یا جذر گرفتن می باشد. سه دلیل عمده برای این کار عبارتند از:

  • تثبیت واریانس

اگر در یک سری، روند وجود داشته باشد و واریانس با میانگین در حال افزایش باشد در این صورت، انجام تبدیل توصیه می گردد. بویژه اگر انحراف معیار مستقیما نسبتی از میانگین را تشکیل داده باشد، در این صورت استفاده از یک تبدیل لگاریتمی توصیه می شود.

  • جمع پذیر نمودن اثر فصلی

اگر در یک سری رونددار، میزان اثر فصلی با میانگین در حال افزایش باشد در این صورت با بهره گرفتن از تبدیل داده ها می توان اثر فصلی را از سالی به سالی دیگر تثبیت نمود. در این صورت گفته می شود که اثر فصلی جمع شونده می باشد. اگر میزان اثر فصلی به طور مستقیم نسبتی از میانگین باشد در این صورت اثر فصلی ضرب شونده خواهد بود و برای تبدیل آن به اثری جمع شونده، نیاز به انجام یک تبدیل لگاریتمی می باشد. این تبدیل تنها در صورتی به تثبیت واریانس می انجامد که جزء اخلال نیز ضرب شونده باشد.

  • نرمال ساختن داده ها

مدل سازی و پیش بینی معمولا بر پایه این فرض که توزیع داده ها نرمال می باشد صورت می گیرد. در عمل، ضرورتا این حالت وجود ندارد. به عنوان مثال ممکن است که در یک مقطع زمانی، بواسطه وجود جهش هایی که همگی در یک جهت ( بالا یا پایین) قرار دارند

. Akaike information criterion

[2] . (Schwarz) Bayesian information criterion

[3] . Gaussian

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...